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Abstract

Modelling of cutting forces in milling is a key aspect for an accurate simulation of the process. For fast and reliable simulation with 3 axis
milling machines, macroscopic approach is often used. The tool is divided in slices around its axis and a mechanistic model is used to predict the
elementary cutting forces. In robotic machining, the tool can experience more complex toolpath and its axis may be tilted during machining due
to the flexibility of the robot. The paper presents an improvement of the cutting forces model allowing the simulation for cases where the degrees
of freedom in rotation of the axis are freed.
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1. Introduction

Robotic machining is a new development opening interest-
ing possibilities from an industrial point of view. As compared
to traditional CNC milling machines, robots offers a larger
working range and a better accessibility. However, the serial
architecture of the robot makes it prone to vibratory problems
such as chatter [1]. The optimisation of the whole process (tool-
path, robot posture, cutting parameters) can be acchieved from
an experimental point of view [2, 3] but the tests are time con-
suming and needs to be supported by physical modelling.
Numerical simulation is a promising approach to optimize the
machining operation on a robot. The main idea is to generalize
the time-domain methods developed for a classical machine-
tool[4] to the specificities of robotic machining. Three aspects
must be considered in the model: the dynamic behaviour of the
robot[5, 6], the cutting forces produced by the mill[7] and the
removal of the material from the workpiece [8, 9]. Several as-
pects makes the simulation more complex with a robot than
with a standard CNC machine:
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• Like in five axis milling, the movement of the tool com-
bines translation an rotation of the bodies; therefore, the
geometrical modelling of the removal of material is more
complex than for 2D1/2 operations;
• the dynamic response of the robot depend on the position

of the end effector and the configuration of the robot;
• flexibilities of the bodies and the joints can have an im-

pact on the flexibility of the system, the control can also
have an influence on the stability of the system.

2. Objective of the paper

The aim of the paper is to describe the generalization of an
eraser of matter model used to predict the machined surface for
milling operation. The rotational degrees of freedom are set free
in order to allow a more accurate simulation of robotic machin-
ing without adding too much complexity in this stage of the
simulation.

3. General algorithm

The dynamic behavior of the robot can be modelled by its
modal model [7, 5, 6] or via multibody approach [10, 11]. Both
approaches allow the setting of the model of motion described
by the governing equation:
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where q is the vector gathering the configuration parameters of
the system, q̇ and q̈ its first and second time derivatives, M the
mass matrix, h the contribution of centrifugal, gyroscopic and
Coriolis effects and g the external forces [12].
These equations can be rewritten as:
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In order to solve these equations numerically, the total time
of the simulation is divided in small increments (time step h)
and each part of equation 2 is evaluated at each time step. The
computation of position and velocity from the acceleration is
made by choosing and integration scheme allowing the predic-
tion of position and speed at the next time step from the value of
position, velocity and acceleration at the current time step and
the acceleration at the next time step:

qt+h = Λ
(
qt, q̇t, q̈t, q̈t+h

)
(3)

q̇t+h = Λ̃
(
qt, q̇t, q̈t, q̈t+h

)
(4)

Λ and Λ̃ are the expression of position and speed at the next
time step as a function of the acceleration. The choice of New-
mark’s scheme [13] gives good results for milling operations.
The equations of motion are then built in their residual form
from the kinematics and the applied forces. The integration con-
sists in computing the equations of motion (equation 2) in terms
of the accelerations at time t + h after having replaced the po-
sitions q (equation 3) and the velocities q̇ (equation 4) by their
integration formulas. With this substitution, the only remaining
unknowns are the accelerations q̈:
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The solution of this equation is found using a zero-finding
procedure to achieve the convergence of the acceleration q̈ for
each configuration parameter at time t + h as. Newton-Raphson
method can be chosen, leading to:

q̈t+h,n = q̈t+h,n−1 − J−1 · F
(
q̈t+h,n−1

)
(6)

with n the iteration on the Newton Raphson procedure, F
(
q̈t+h

)
the equation of motion and J the Jacobian matrix of equation
5 with respect to the unknown accelerations. Convergence is
obtained when:∥∥∥∥q̈t+h,n − q̈t+h,n−1

∥∥∥∥ ≤ ε (7)

with ε the tolerance. During the numerical integration of the
equations of motion, the first predicted position of the cutting
edge is only determined by considering the kinematics of the
machine. A corrected position can be found by taking the dy-
namics of the system into account (Figure 1). This leads to a

slightly different position of the cutting edges, modifying ac-
cordingly the value of the cutting force. The cutting force eval-
uated at the beginning of the time step can be updated, leading
to a new estimation of the position of the cutting edge. The
computation of a single time step thus needs to iterate the in-
tersection procedure until the position of the cutting edge has
converge within a given tolerance. Once the convergence is
achieved, the surface is updated before the computation of the
next time step.

Fig. 1. General algorithm.

3.1. Surface modelling

One of the key aspect in the dynamic simulation of milling is
the prediction of the interaction between the tool and the work-
piece. This part of the algorithm allows the prediction of the
cutter engagement, the undeformed chip thickness and the up-
dated surface allowing the prediction of the kinematic rough-
ness.
For a full 3D operation, the literature presents models based on
CAD approach such as triangular mesh [8, 9], voxel [14, 15],
dexel [16] or complex engagement identification [17]. The aim
of this paper is to present a simplified approach based on the
extension of an eraser of matter model [18].

2
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3.1.1. Eraser of matter model
In this model the surface is seen as a stack of slices, each

of them described by a set of interconnected points. The move-
ment of the cutting edge in each slice is followed (figure 2).
During each time step, the movement of the cutting edge is ap-
proximated by a polynomial function (Peigne et al [18] shows
that a second order curve gives a good compromise between ac-
curacy and computing time). The distance between the current
position of the cutting edge and the intersection of the action
line with the surface gives the undeformed chip thickness.

Fig. 2. Eraser of matter model (O: cutter center; A0, A1, A2: position of the
cutting edge at time t, t − 1 and t − 2; B: intersection of line 0A0 with the
surface; C: intersection of edges path with the surface.

After convergence of the dynamic system, the area swept
by the cutting edge during the time step is removed from the
surface in order to update it. By following the value of the un-
deformed chip thickness between two time steps, it is possible
to determine the type of option to consider (figure 3):

• if no contact between tool and workpiece was detected at
previous time step:

– if there is still no contact, no machining is made and
the surface doesn’t need to be updated;

– if a contact is detected, the cutting edge enters into
the workpiece.

• if the cutting edge was machining during the previous
time step:

– if a contact is still present, the machining carries on;
– if the contact is lost, the cutting edge exits the work-

piece.

Fig. 3. Eraser of matter model.

3.1.2. Cutting edge modelling
Engin et al [19] proposed a procedure to evaluate the geo-

metrical data (radius, orientation of the cutting edge,...) for any
kind of standard solid endmill on a frame attached to the cut-
ter itself. In order to allow a complex movement of the cutter
during the simulation, it is necessary to transform the coordi-
nates of all the points describing the cutting tool movement. For
this purpose, three geometrical operations described by their re-
spective homogeneous transformation matrices are successfully
performed to obtained the final position of the edge:

• a rotation around the axis of the cutter of an angle θ = ω·t;
• a translation to take the nominal feed of the cutter into

account;
• the deviation of the cutter (in translation and rotation) due

to the vibration of the cutter.

The classical use of this model considers that the cutting tool
has a planar motion, so one particular point on a cutting edge
stays at the same height with respect to the surface.

3.1.3. 3D operations
The planar motion of the tool, which is a reasonable assump-

tion for 2D1/2 milling operation is not valid any more for a
robotic machining operation. Indeed, the flexibility of the robot
joint and bodies may lead to a rotation of the axis of the spindle
from its programmed position.
The proposed algorithm is described as follow:
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• in order to optimize the computation, the geometrical
data of the cutter are pre computed at the beginning of
the simulation with a fine axial increment;
• this actual edge geometry is approximated by a Bezier

spline [20] thank to the identification of poles Pi;
• the homogeneous transformation matrix (combining ro-

tation of the cutter around its axis, feed motion and dis-
placement or rotation of the cutter due to the flexibility)
are applied to the poles;
• the intersection between the cutting edge and the surface

is performed;
• the cutting forces are computed on a frame attached to the

cutting tool and then projected on a global frame tanks to
the homogeneous transformation matrix.

The coordinates of the points on a spline are computed by the
blending of the poles by polynomial functions Bi,n:

C (u) =

n∑
i=0

Bi,n (u) Pi 0 ≤ u ≤ 1 (8)

For Bezier curves, the blending functions are the nth degree
Bernstein polynomials defined as:

Bi,n (u) =
n!

i! (n − i)!
ui (1 − u)n−i (9)

One interesting property used here is that the image of a Bezier
curve by any affine transformation is the Bezier curve based on
the poles that have been subjected to the affine transformation.

The choice of the number of poles is made at the beginning
of the simulation to guarantee a maximal deviation between the
actual cutting edge shape and its approximation below a given
tolerance. For a cutter with a standard geometry, 10 poles are
sufficient to limit the maximum deviation to 1 µm.

3.2. Cutting force modelling

Once the undeformed chip thickness has been computed, the
elementary cutting force can be computed based on a mecha-
nistic model. Several models are listed in the litterature, three
of them are used by most authors: the linear model derived
from Merchant’s theory, the exponential model proposed by
Kienzle[5] and the model proposed by Armarego [21].
The linear model considers that the elementary cutting force dF
depend on the undeformed chip thickness h and the elementary
axial depth of cut da via a proportional coefficient K (called the
cutting coefficient or the specific pressure):

dF = K · h · da (10)

The exponential model considers that the influence of the un-
deformed chip thickness is a power law (with the exponent n
below one):

dF = K · hn · da (11)

The third model considers that the forces are produced by two
main mechanisms: shearing of the chip (force proportional to

undeformed chip section h·da and parameter Kc) and friction of
the chip along cutting edge (proportional to elementary length
of cutting edge dS and coefficient Ke):

dF = Kc · h · da + Ke · dS (12)

4. Simulation results

4.1. Cutting forces with an untilted cutter

A first test is performed to see if the model is able to re-
produce results from the litterature [19]. Slot milling is made in
GGG70 spheroidal graphite with a ball endmill of 12 mm diam-
eter. The cutting parameters are a spindle speed of 1000 RPM,
an axial depth of cut of 2 mm and a feed of 0.08 mm/tooth. The
predicted cutting forces (figure 4) are identical to the reference,
the proposed simulation method is thus able to correctly predict
the cutting force for an operation without tilt of the cutter.

Fig. 4. Cutting force simulation with a ball endmill.

4.2. Constant tilt

For the next simulation, a cylindrical endmill of 10 mm di-
ameter with four cutting edges is used. The machined material
is 7075-T6 aluminum. A linear model is used for the cutting
force with Kt=550 MPa and Kr=200 MPa [22]. The spindle
speed is 20000 RPM, the feed per tooth is 0,05 mm, the radial
depth of cut is 1 mm and the axial depth of cut 20 mm. The
global frame is composed of x describing feed direction, z ver-
tical and y creating an orthogonal frame xyz.
A constant tilt angle around x axis is imposed, varying from
one to five degrees. Figures 5 and 6 shows the evolution of the
cutting force on the x and y direction for two consecutive edges
of the tool. It can be seen that the tilt of the cutter has a slight
effect on the value of the cutting force but creates a significant
modification of the immersion angle of the cutter. Indeed, for
the five degree case, the radial depth of cut at the top of the
cutter is more than the double of its nominal value.
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Fig. 5. x component of cutting force for 0 (plain), 1 (dashed), 2 (dotted) and 5
(plain with cross) degree tilt.
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Fig. 6. y component of cutting force for 0 (plain), 1 (dashed), 2 (dotted) and 5
(plain with cross) degree tilt.

Tilt angle has a more significant effect on the value of the
axial component (figure 7). Without tilt angle, the axial compo-
nent is nearly zero while its value gradually increase with the
tilt of the cutter.

The machined surface with 5◦ tilt angle is shown in figure 8.

4.3. Variable tilt

In order to show the effect of a time varying tilt on the cutter,
a 10 mm ball endmill is used to model the cutting forces. The
tilt angle has a sinusoidal variation at low frequency:

tilt = α · sin (2π · f · t) (13)

where α is the amplitude of the tilt variation and f the frequency
of the oscillations. The specific pressures are the same as the
previous case, a half immersion radial depth of cut is selected
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Fig. 7. z component of cutting force for 0 (plain), 1 (dashed), 2 (dotted) and 5
(plain with cross) degree tilt.

Fig. 8. Modelled surface for a constant tilt of 5 degree.

while the other cutting parameters are maintained (20 mm axial
depth of cut, 0,05 mm/tooth feed, 20000 RPM spindle speed).
The frequency imposed for the tilt is 10 Hz and its maximum
value 5◦. Figure 9 shows the evolution of the norm of the cutting
force along the simulation. It can be seen that the envelope of
the signal has a periodic evolution at the same frequency as the
modulation of the tilt angle. This is the image of the evolution
of the effective axial depth of cut during the simulation.

In addition, figure 10 shows the machined surface. The
marks left by the tool are clearly visible in the workpiece.

5. Conclusion and perspectives

The paper presents the generalisation of a 2D1/2 approach
to compute the cutting forces in milling if the cutting tool axis
is tilted. The interaction between the tool and the workpiece
is modelled thanks to an eraser of matter model allowing to
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Fig. 9. Cutting force norm for the variable titl case.

Fig. 10. Modelled surface for a variable tilt.

reduce the geometrical computations to plane cases. The pro-
posed model is able to reproduce the machined surface and the
cutting forces for translation and rotation of the cutter along its
nominal position.
As a perspective, this model can be use to predict more accu-
rately the cutting forces and the stability of milling operations
on multi axis machines or robotic machining.
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